
OpenCard and PC/SC Page 1 of 13

OpenCard and PC/SC - Two New Industry Initiatives for Smart Cards

Abstract

With OpenCard and PC/SC, we see two new industry initiatives in the chip card world of
today, which are currently developing into defacto standards and might eventually evolve
to formal international standards. This document tries to give an overview of both
initiatives and to explain their relationship and positioning to each other.

About the Author

Frank Seliger’s current responsibility is software architect in IBM’s Global Smart Card Solutions (GSCS) unit.
IBM GSCS is an active member of both, the OpenCard and the PC/SC initiative. Frank Seliger is working on
the architecture of the OpenCard Framework and has contributed to the PC/SC specification.

Introduction

“The nice thing about standards is that you have so many to chose from”

Andrew Tanenbaum

The smart card industry is currently in a transition from the gold rush atmosphere of a new
technology towards a mature technology with more established products and processes.
Increasingly we see industry initiatives for standardized protocols and solutions replacing
the diversity and proliferation of isolated solutions. This trend makes it less of an
adventure and thus more attractive to invest into solutions that use and exploit smart
cards.

A strong force for standardization and interoperability arises from the belief, that almost all
new smart card solutions will have several applications on one card and several possible
card types carrying one kind of application. This is commonly called "multi-application
card" [Cart97].

The physical level and the lower layer protocol-levels have been governed by the formal
ISO 7816 standard for several years now [ISO-97]. This standard leaves enough room for
variation and interpretation that components from different manufacturers are often not
compatible with one another although they conform to the ISO 7816 standard. The higher
layers of programming, which an application programmer using a smart card is preferably
dealing with, are barely regulated by ISO 7816.

Besides ISO 7816 there are several specifications that emerged from specific application
domains. Examples are EN 726 from the telecommunication domain [EN726], EMV’96 3.0
from the finance domain [EMV-96], EU/G7 WG7 from the health care domain [G7-97], just to
mention a few.

OpenCard and PC/SC, which we will look at more closely in the following, are both not
business domain specific. The two initiatives have a different scope and focus.

OpenCard as a specification is concerned with an object oriented framework located in
the computer to which the smart card is attached. The reference implementation has been
developed using the Java programming language and execution system and lends itself
to be used for application development in Java. For regulation of the smart card itself,
OpenCard relies on ISO 7816. Therefore, OpenCard can be used together with any smart
card.

PC/SC as a specification is focussing on the Personal Computer and the card terminal

OpenCard and PC/SC Page 2 of 13

attached to it. The central component of specification is the Resource Manager, which
should be integrated into the computer’s operating system. The implementations available
today are offered for use on Personal Computers running a 32 bit Microsoft Windows
operating system. For regulation of the smart card itself, PC/SC relies on ISO 7816.
Therefore, PC/SC can be used together with any smart card.

Technical Challenges of Providing a Multi-Application Card

Smart card applications essentially comprise two parts: the application part resident on the
card, henceforth called card-resident application and the application part running in the
computer henceforth called the card-using application. In the case of a freely
programmable terminal this device itself can be considered “the computer” here. The
card-resident application comprises the data elements kept on the card in the context of
the application, such as a purse balance, and possibly application-specific functionality in
the card, such as the secure increasing or decreasing of a purse balance. The card-using
application comprises the program code in the attached computer (or terminal) that
interacts with the card-resident data and functions.

Parties involved in deploying a smart card application

Smart card applications are deployed by a cooperation of a Card Issuer and an
Application/Service Provider (see Figure 1: Parties involved in developing the software of a
smart card solution). In the past, these two roles have commonly been owned by the same
organization. With multi-application cards, this has to change. An application developer
and service provider may want to deploy his applications on smart cards issued by
different issuers. Issuers may want to deploy smart card applications from various
application developers and service providers on their cards.

Furthermore, issuers may want the freedom to choose different smart card types with
different Card Operating Systems to deploy the same application. For instance, for a
simple multi-application card combining airfare collection and a loyalty application, the
issuer may want to choose an inexpensive card. For the executive card, which in addition
combines these two applications with credit/debit and electronic cash applications, he
would use a more expensive card with tighter security mechanisms.

Finally, access to these applications should be globally accessible and therefore should
work with the equipment and hardware drivers provided by any Card Terminal Provider.

The technical challenge is to let these different players vary without redoing the entire
solution with every change of a single component. The different parts contributed from the
different players must be independent and interoperable. This is the primary goal of the
two industry initiatives described in the following.

Figure 1: Parties involved in developing the software of a smart card solution

OpenCard and PC/SC Page 3 of 13

OpenCard

The OpenCard initiative was started in early 1997 by the network computer industry. Most
of the future network computers will have an integrated smart card terminal. Therefore, the
middleware to drive smart cards was specified as part of the Network Computer
Reference Profile [NCRP97]. The companies driving OpenCard as part of the Network
Computer Reference Profile were IBM, Netscape, NCI and Sun.

Later more technology providers as well as smart card users joined. In October 1998 the
OpenCard Consortium included 3-G International Inc., Bull Personal Transaction Systems,
Dallas Semiconductor Corporation, First Access, Gemplus, IBM, Intellect, Network
Computer Inc., Newcom Technologies, Schlumberger Smart Cards & Terminals, SCM
Microsystems, Siemens Microelectronics, Sun Microsystems, UbiQ and Visa International.

Figure 2: The members of the OpenCard Consortium

The technical focus of OpenCard lies at providing an object oriented framework
(OpenCard Framework, or OCF for short) to the application developer and at decoupling
the different parties involved in a smart card solution (see Figure 1). The reference
implementation of OCF has been developed as a set of Java packages and classes
[OCF97].

The service provider or application programmer is writing his services to the interface
provided by the OpenCard Framework itself and of the CardServices, which are plugged
into the framework. This ensures that differences or changes in the card operating system,
in the card terminal or in the application management scheme used by the card issuer do
not impact the application code. Figure 3 shows the highlevel architecture of OCF.
Together with each component, the provider of it is indicated (horizontal layers).

The application developer provides the application program (shown as the highest layer).

The card issuer is responsible for the application management layer (second from top).
This layer manages the execution and coexistence of the different application functions
and application data on the same card. Examples of application management schemes
are found in ISO 7816-4,5 and in EMV’96 3.0.

OpenCard and PC/SC Page 4 of 13

Figure 3: Components of the OpenCard Framework and their providers

The application program will most likely use application data on the card. In addition, it
might use card-resident application-specific services. If the card is a JavaCard, these
services and the data they operate on are implemented as a card-resident applet. For
traditional smart cards, the application-specific function on the card is usually provided by
the developer of the card operating system. The encapsulation of these dependencies in
OCF is called CardService (third layer from top). A typical CardService would be a
PurseCardService providing function to increase of decrease the purse balance by a
specified amount. The application management, which we have seen in the previous
layer, is as well offered as a CardService.

The provider of the card reader device must also supply a CardTerminal object to drive
the actual hardware (lowest layer).

The OpenCard Framework core is covering the right side of the picture. It contains
objects like CardServiceScheduler, SmartCard, CardID and two registries.

In the following, we will look at OCF and its classes in more detail. Before we do so we
briefly revisit a basic principle of object oriented software development: An object is an
instance of a class. A class can be considered the blueprint for all objects of the same
kind.

The class SmartCard is the central abstraction. A SmartCard has a CardID that
contains the information uniquely identifying the card type. This information is gained after
the first communication with the card has been established in the Answer To Reset (ATR).
The SmartCard is the primary object used by the application program. For application
specific functions, the application turns to the respective CardService objects.

OpenCard and PC/SC Page 5 of 13

A CardService has all information about the card operating system that it supports.
CardServices can use function from other CardServices. For example, a
PurseCardService, that needs to access the files on the card, should access these
through the FileSystemCardService.

All knowledge about a family of card services is encapsulated in a
CardServiceFactory. The use of such factories is a standard object oriented design
pattern. The CardServiceFactory with a set of CardServices is usually provided by
the same developer.

When a CardService with a particular interface is requested from the OpenCard
Framework, the CardServiceRegistry calls every CardServiceFactory registered
for the CardID of the SmartCard object until an appropriate CardService has been
created. The new CardService object is now connected to the SmartCard object with
which it will be used.

While we can have many CardService and CardServiceFactory objects in a
system, there is always just a single CardServiceRegistry.

If cryptographic functions are needed to access the card, they are called by the
CardService. Again, the CardService knows best about the security mechanisms
and protocols needed for the specific card operating system.

A CardService communicates with the CardTerminal through the
CardServiceScheduler. As the SmartCard and the CardID classes, the
CardServiceScheduler class is provided by the OpenCard Framework core.

The CardServiceScheduler takes care of synchronization in situations with concurrent
access from different applications on the same card. Consequently, we have for every
smart card exactly one CardServiceScheduler object.

The main abstraction in the reader device layer is the CardTerminal class. For every
hardware device, the associated CardTerminal must be provided. A CardTerminal
has one or more objects of type Slot. This allows exact modeling of the situation of card
terminals with more than one slot for card insertion, for example to accept a patient data
card together with the authorization card of the doctor. A CardTerminal can also have a
keyboard and a display (not shown in Figure 3).

As we have previously seen in the card service layer, a CardService is created from a
CardServiceFactory and all CardService and CardServiceFactory objects are
controlled by the CardServiceRegistry. Now we find the same mechanisms in the
reader device layer: A CardTerminal object is created from a
CardTerminalFactory, and to keep track of all known CardTerminal types is the
responsibility of the CardTerminalRegistry.

The application management layer contains the application management CardService
and the associated CardServiceFactory. An application management CardService
has all information on the application management scheme used. This scheme is usually
controlled by the card issuer. Industry initiatives to agree on the application management
scheme are under way (for example EMV’96). Until the world has agreed on a single
scheme, exchangeable application management CardService objects are protecting
the application writers from differences and changes in that layer.

OpenCard and PC/SC Page 6 of 13

OCF offers a separate component for the file system of a smart card, as specified in ISO
7816-4. This function is not part of the core framework opencard.core. Rather it is
contained in the optional packages opencard.opt. In the opencard.opt.iso.fs
package, we find a CardFile with attributes like TRANSPARENT, LINEAR_FIXED,
LINEAR_VARIABLE and CYCLIC_FIXED and a CardFilePath,
CardFileInputStream, CardFileOutputStream, CardFileReader and more.

The Java reference implementation of the OpenCard Framework is publicly available on
http://www.opencard.org at no cost. Due to the US export restrictions on cryptographic
software, the distribution is split into a part without cryptographic capability and into a part
that contains cryptographic software which is underlying the export restrictions.

PC/SC

PC/SC, with full name “Interoperability Specification for ICCs and Personal Computer
Systems 1.0” [PCSC97], covers the use of smart cards with Personal Computers. In eight
parts, the specification is spanning the entire range from the physical characteristics
required from smart cards and readers up to the layer of application programming. The
specification is based on and is compatible with ISO 7816. The focus is on the
interoperability of smart card (called Integrated Circuit Card, or ICC) and card
terminal (called Interface Device, or IFD) and on the cooperation between the card
terminal and the PC operating system.

The PC/SC Workgroup was formed in May 1996. The companies that drove the PC/SC
specification 1.0 are: CP8 Transac (Bull), Gemplus, Hewlett-Packard Company, IBM,
Microsoft Corporation, Schlumberger SA, Siemens Nixdorf Informationssysteme AG, Sun
Microsystems, Toshiba and Verifone. Most of these companies also have announced
PC/SC compliant products, particularly smart card readers of all kinds.

The eight specification parts of PC/SC 1.0 are shown in the Figure 4 and explained below.

OpenCard and PC/SC Page 7 of 13

Figure 4: Architecture layers and specification parts of PC/SC 1.0

1. Introduction and Architecture Overview

2. Interface Requirements for Compatible IC Cards and Interface
Devices

Part 2 specifies physical characteristics of the card and the reader hardware, as for
example voltages. The lower transport protocol levels including the protocol error
handling rules are also specified here. Further, we find here the specification for the
expected Answer To Reset (ATR).

3. Requirements for PC-Connected Interface Devices

Part 3 specifies the characteristics of the Interface Device Subsystem. To let
the higher layers of PC/SC communicate with the Interface Device (IFD) in a
device independent way, an IFD Handler is adapting the IFD to a common

PART 3

PART 4

PART 2

 PART 8

 IFD

PART 5

ICC
Resource Manager

 IFD
Handler

 IFD
Handler

 IFD
Handler

ICC ICC

Applications

P
A
R
T

1

PART 7

PART 6

 IFD

Crypto Service ProviderICC Service Provider

 IFD

ICC

OpenCard and PC/SC Page 8 of 13

programming interface.

The IFD must provide basic function like sending commands to the card or checking
for card insertion. Optionally it can have various other capabilities, such as powering
up or down the card inserted, or user authentication with a PIN pad, keyboard,
fingerprint scanner, retina scanner etc.

4. IFD Design Considerations and Reference Design Information

Part 4 gives help and guidelines for the design of the Interface Device
Subsystem’s inner protocols.

5. ICC Resource Manager Definition

The ICC Resource Manager is the central component of a PC/SC system. It controls
all IFD’s, as well as the off-card resources providing the card’s application-
programming interface (called ICC Service Provider) and the cryptographic function
(the Crypto Service Provider). The ICC Resource Manager is a privileged component.
It should offer the same degree of protection and security as the base operating
system. In future versions of the Microsoft Windows operating system, the ICC
Resource Manager will be an integral part of the operating system.

6. ICC Service Provider Interface Definition

Part 6 specifies the ICC Service Provider and the Crypto Service
Provider interfaces. These two interfaces are the primary interfaces the application
developer will use.

The ICC Service Provider (ICCSP) must offer a mandatory class SCARD that
maintains the context of the communication with the smart card. Optionally the ICCSP
may offer classes for access of the files on the smart card and for the authorization
functions needed to access the card.

The Crypto Service Provider is optional. If cryptographic function is needed for
the access of the card, that function is localized in the Crypto Service Provider.
Such function often falls under export restrictions for cryptography components.
Keeping it localized allows for better control. For the Crypto Service Provider
the interfaces are specified for key generation, key management, key import/export,
digital signature, hashing and bulk encryption services.

The ICC Service Providers need to be registered together with the card and interfaces
they support. This enables the system to identify and fetch the appropriate ICC SPs
for a particular card. For the identification of the card, the ATR or parts of it are used.

7. Application Domain/Developer Design Considerations

Part 7 contains advice for the application developer on how to use the interface
provided by the ICC Resource Manager to obtain information on the card readers
installed, to wait for insertion of a particular card and other common tasks.

8. Recommendation for Implementation of Security and Privacy ICC
Devices

Part 8 contains advice on how to handle identification, authentication, and secure
storage and how to achieve information integrity, traceability and confidentiality in a
smart card solution. In the section on Cryptographic Services, it also offers an

OpenCard and PC/SC Page 9 of 13

excellent overview of the current cryptographic methods.

Microsoft has provided implementations of the PC/SC 1.0 specifications on the Windows
95 and Windows NT 4.0 platforms and has released this implementation to the public
Web. For Windows NT 5.0 the resource manager will be part of the operating system, for
Windows 98 it is shipped as part of the installation package.

The Relation of OpenCard Framework and PC/SC

OpenCard Framework and PC/SC are both providing for the access to smart cards from
computers of different kind. We can expect that they have concepts and mechanisms in
common. Comparing the individual components of both, we find that this is quite true.

Commonality in the Architectures of OCF and PC/SC

The OpenCard and the PC/SC initiatives both have the goal of supporting the
interoperability of the different elements of a smart card solution, of card, card reader and
application software. How do the architectures of the OpenCard Framework and of
PC/SC address this goal? Figure 5 is showing the correspondence of the architecture
elements of OCF and PC/SC.

Figure 5: Comparison of the Architecture components of OCF and PC/SC

OpenCard and PC/SC Page 10 of 13

The application program uses mainly application specific services and application
management services. In PC/SC the ICC Service Providers offer these services, in
OCF the CardServices provide them. The CardTerminal in OCF finds its
correspondence in the Interface Device Subsystem in PC/SC. Therefore, on
comparing the major components OCF and PC/SC have a lot in common.

Differences in the Architecture of OCF and PC/SC

Architectural differences appear when we zoom closer into the components. While
OpenCard does not make any further specifications of the internal workings of the
CardTerminal, PC/SC provides very detailed guidance for the Interface Device
Subsystem. PC/SC structures the Interface Device Subsystem into the IFD and
the IFD Handler (see Figure 5) and gives very detailed specifications for both. The
absence of detailed specifications for the inner structure of an OpenCard CardTerminal
has a desirable consequence for the interoperability between OCF and PC/SC. It was
possible to create an OpenCard class PCSC10CardTerminal that allows the use of any
PC/SC compliant IFD Subsystem as OpenCard CardTerminal.

Thus, OCF and PC/SC do hardly overlap in the area of the CardTerminal or IFD. The rich
specification of PC/SC rather complements OCF.

More architectural differences become apparent, when we examine the layers for the card
itself more closely.

Table 1 lists the corresponding classes of OCF and PC/SC and their responsibilities. The
first difference between OCF’s and PC/SC’s handling of the smart card layers is a couple
of unmatched abstractions in OCF, CardID and SmartCard.

OCF class PC/SC class Responsibility of the class

CardID (use basic String) ATR and identification of card type

SmartCard

(no direct correspondence)

(no direct correspondence)

SCARD

An application’s view of a smart card

Smart card communication context

CardFile

CardFileInfo

(no direct correspondence)

CHVDialog

CardFilePath

Credential

(no direct correspondence)

CredentialStore

CredentialBag

FILEACCESS

(no direct correspondence)

CARDAUTH

CHVVERIFICATION

(no direct correspondence)

CRYPTKEY

CRYPTHASH

(no direct correspondence)

(no direct correspondence)

An application’s view of a smart card file

Access permissions for a smart card file

Authentication card-to-app. + app.-to-card

User Dialog for Card Holder Verification

Path of a smart card file

Cryptographic Key

Hashing (message digest) for crypto

Credentials (keys) for one application and OS

Bag of all credentials (keys) for one application
on all supported OS

CardService (no direct correspondence) Application (domain) specific service

ApplicationManage- (no direct correspondence) Application selection and data management

OpenCard and PC/SC Page 11 of 13

mentCardService

Table 1: Classes for abstraction of the smart card in OCF and PC/SC

The next difference is more significant. OCF and PC/SC took a completely different cut at
the organization of cryptographic algorithms and the associated credentials. This is hardly
surprising. This area would best be addressed by a separate cryptographic framework.
Unfortunately, the choice of cryptographic standards and frameworks is all but clear.
PC/SC specified another generic crypto interface with the interface of the Crypto
Service Provider. OCF treats the interface of the crypto functions needed as an
internal decision of the CardAgent. If the industry reaches some more convergence in
that area, we can expect OCF to use a standard crypto interface. We can speculate that
PC/SC will try to adapt to such a standard interface, if this is possible in a backwards
compatible way.

The most significant difference in the smart card layers of OCF and PC/SC is following
structural division found in OCF but not specified in PC/SC. OCF enforces a clear
separation between application specific services (OpenCard CardService) and
application management function (OpenCard ApplicationManagementCardService).

Differences in the Scope of OCF and PC/SC:

As we have already discussed, PC/SC concentrates on the PC platform. PC/SC
concentrates more on the reader device than OCF. OCF has more emphasis on
specifying a separation of application-specific card services and application management.

Figure 6: PC/SC and OpenCard have a different scope and overlap only where Java is used on Windows

Besides these obvious differences, there are a few more subtle distinctions. OCF has
been architected and designed by Java programmers for Java programmers. It is centered
in the world of Java and the net. Java programmers will feel at home with OCF’s style, for
example with the smart card file I/O that is closely modeled after the standard I/O of native
Java.

OpenCard and PC/SC Page 12 of 13

Is there a conflict on the PC between OCF and PC/SC?

Since there will be applications on the PC using PC/SC and others using OCF, will we be
in the next problem of incompatibility, just at a higher level? The members of the PS/SC
initiative and the members of the OpenCard initiative work together to avoid this problem.
OpenCard supports existing PC/SC interface devices as OpenCard CardTerminals.
OpenCard’s clear separation of card operating system, application-specific card services
and application management can be added to PC/SC as a backwards compatible
extension. This is addressed by the technical workgroups of OpenCard and PC/SC.

What can we predict for platforms other than the PC and NC?

OpenCard will very likely be available not just on PC’s and Network Computers, but also
on other platforms like POS terminals, PDA’s, smart phones and set top boxes. We can
expect to see OCF implementations that adapt to the limited Java environments of smaller
devices. These versions will exploit and help exploiting the portability of Java code.

For PC/SC we can expect an implementation on the future versions of Window CE. For
PC/SC it is an open question if we will see it on additional non-Windows platforms. A
subset of PC/SC function has been implemented by IBM for the Windows 3.11 and OS/2
operating systems. For Linux there exists an Alpha release of a Smart Card Resource
Manager offered by the MUSCLE (Movement for the Use of Smart Cards in a Linux
Environment) [Musc98]. Microsoft stated that it is not interested to provide PC/SC on other
platforms than the new versions of Microsoft Windows, but that it welcomes other
companies, should they plan to provide this. The implementation of the resource manager
function for another operating system does not seem a small task.

Relation to Java ™ Card and Windows for SmartCard ™

Sometimes the names OpenCard and Java Card seem to be a source of confusion. We
attribute the difficulties to the fact, that the OpenCard reference implementation is using
Java. Nevertheless, the difference between OpenCard and Java Card is simple and
fundamental: Java Card [JCrd97] is Java in the card itself, while OpenCard and PC/SC are
driving the card from the outside.

A Java Card will typically be used in conjunction with OpenCard and/or PC/SC.
Particulary OpenCard as a Java framework can offer a seamless Java environment
together with JavaCards. In the same way the Windows for SmartCard cards, announced
by Microsoft in October 98, can be used in conjunction with OpenCard and/or PC/SC.

References

[Cart97] Several papers on multi-application smart cards and trends can be found in the Conference
Proceedings of the “Cartes 97”, Oct 15-17 in Paris.

[EMV-96] EMV’96 3.0 Integrated circuit {card, card terminal, card application} specification for payment
systems

[EN726] EN 726 Telecommunications integrated circuit(s) cards and terminals

[G7-97] EU/G7 WG7-3 Interoperability of Healthcard Systems

[ISO-97] ISO 7816 Identification cards – Integrated circuit(s) cards with contacts

[JCrd97] http://www.javasoft.com/products/javacard (Java ™ Card is a trademark of Sun.)

OpenCard and PC/SC Page 13 of 13

[JSec97] http://java.sun.com/products/jdk/1.1/docs/guide/security

[Musc98] http://www.linuxnet.com/smartcard/index.html

[NCRP97] http://www.opengroup.org/pubs/catalog/x975.htm

[OCF-97] http://www.opencard.org

[PCSC97] http://www.smartcardsys.com

[SCWin98] http://www.microsoft.com/windowsce/smartcard/default.asp (Smart Card for Windows™ is a
trademark of Microsoft.)

